Излучение - определение. Что такое Излучение
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Излучение - определение

ЭТО ПЕРЕДАЧА ЭНЕРГИИ В ФОРМЕ ВОЛН ИЛИ ЧАСТИЦ ЧЕРЕЗ ПРОСТРАНСТВО ИЛИ ЧЕРЕЗ МАТЕРИАЛЬНУЮ СРЕДУ
  •  [[Электромагнитный спектр]]
  • закону обратных квадратов]], так что общее излучение энергии, которая проходит через воображаемую сферическую поверхность, одинакова, независимо от того, как далеко от антенны отводится сферическая поверхность. [[Электромагнитное излучение]] включает в себя часть дальнего поля электромагнитного поля вокруг передатчика. Часть «ближнего поля», близкая к передатчику, является частью изменяющегося электромагнитного поля, но не считается электромагнитным излучением.
  • неэкранированных]] людей. Излучение, существующее в природе, включает свет и звук.
Найдено результатов: 289
Излучение         

электромагнитное, процесс образования свободного электромагнитного поля. (Термин "И." применяют также для обозначения самого свободного, т. е. излученного, электромагнитного поля - см. Максвелла уравнения, Электромагнитные волны.) Классическая физика рассматривает И. как испускание электромагнитных волн ускоренно движущимися электрическими зарядами (в частности, переменными токами). Классическая теория объяснила очень многие характерные черты процессов И., однако она не смогла дать удовлетворительного описания ряда явлений, особенно теплового излучения (См. Тепловое излучение) тел и И. микросистем (атомов и молекул). Такое описание оказалось возможным лишь в рамках квантовой теории И., показавшей, что И. представляет собой рождение Фотонов при изменении состояния квантовых систем (например, атомов). Квантовая теория, более глубоко проникнув в природу И., одновременно указала и границы применимости классической теории: последняя часто является очень хорошим приближением при описании И., оставаясь, например, теоретической базой радиотехники (см. Излучение и прием радиоволн (См. Излучение и приём радиоволн)).

Классическая теория излучения (теория Максвелла). Физические причины существования свободного электромагнитного поля (т. е. поля самоподдерживающегося, независимого от возбудивших его источников) тесно связаны с тем, что электромагнитные волны распространяются от источников - зарядов и токов - не мгновенно, а с конечной скоростью c (в вакууме c ≅ 3·1010 см/сек). Если источник И. (например, переменный ток) в какой-то момент исчезнет, это не приведет к мгновенному исчезновению поля во всем пространстве: в отдалённых от источника точках оно исчезнет лишь через конечный промежуток времени. Из теории Максвелла вытекает, что изменение во времени электрического поля Е порождает магнитное поле Н, а изменение Н - вихревое электрическое поле. Отсюда следует, что самоподдерживающимся может быть лишь переменное электромагнитное поле, в котором обе его компоненты - Е и Н, непрерывно изменяясь, постоянно возбуждают одна другую.

В процессе И. электромагнитное поле уносит от источника энергию. Плотность потока энергии этого поля (количество энергии, протекающей за единицу времени через единичную площадку, ориентированную перпендикулярно направлению потока) определяется Пойнтинга вектором П, который пропорционален векторному произведению [ЕН].

Интенсивность И. Eизл есть энергия, уносимая полем от источника в единицу времени. Порядок её величины можно оценить, вычислив произведение площади замкнутой поверхности, охватывающей источник на среднее значение абсолютной величины плотности потока П на этой поверхности (П Излучение EH). Обычно поверхность выбирают в форме сферы радиуса R (её площадь Излучение R) и вычисляют Eизл в пределе R → ∞:

(1)

(Е и Н - абсолютные величины векторов Е и Н).

Для того чтобы эта величина не обращалась в ноль, т. е. чтобы вдали от источника существовало свободное электромагнитное поле, необходимо, чтобы и Е, и Н убывали не быстрее, чем 1/R. Это требование удовлетворяется, если источниками полей являются ускоренно движущиеся заряды. Вблизи от зарядов поля́ - кулоновские, пропорциональные 1/R2, но на больших расстояниях основную роль начинают играть некулоновские поля Е и Н, имеющие закон убывания 1/R.

И. движущегося заряда. Простейшим источником поля является точечный заряд. У покоящегося заряда И. отсутствует. Равномерно движущийся заряд (в пустоте) также не может быть источником И. Заряд же, движущийся ускоренно, излучает. Прямые вычисления на основе уравнений Максвелла показывают, что интенсивность его И. равна

(2)

где е - величина заряда, a - его ускорение. (Здесь и ниже используется Гауссова система единиц, см. СГС система единиц.) В зависимости от физической природы ускорения И. иногда приобретает особые наименования. Так, И., возникающее при торможении заряженных частиц в веществе в результате воздействия на них кулоновских полей ядер и электронов атомов, называется тормозным излучением (См. Тормозное излучение). И. заряженной частицы, движущейся в магнитном поле, искривляющем её траекторию, называется синхротронным излучением (См. Синхротронное излучение) (или магнитотормозным И.). Оно наблюдается, например, в циклических ускорителях заряженных частиц (См. Ускорители заряженных частиц).

В частном случае, когда заряд совершает гармоническое колебание, ускорение а по величине равно произведению отклонения заряда от положения равновесия (х = x0 sin ωt, x0 - амплитуда отклонения х) на квадрат частоты ω. Усреднённая по времени t интенсивность И.

(3)

очень быстро (пропорционально ω4) растет при увеличении частоты.

Электрическое дипольное И. Простейшей системой, которая может быть источником И., являются два связанных друг с другом колеблющихся, равных по величине, разноимённых заряда. Они образуют Диполь с переменным моментом. Если, например, заряды диполя совершают гармонические колебания навстречу друг другу, то дипольный электрический момент изменяется по закону d = d0 sin ωt (ω - частота колебаний, d0 - амплитуда момента d). Усреднённая по времени t интенсивность И. такого диполя

(4)

И., расходящееся от колеблющегося диполя, неизотропно, т. е. энергия, испускаемая им в различных направлениях, неодинакова. Вдоль оси колебаний И. вообще отсутствует. Под прямым же углом к оси колебаний И. максимально. Для всех промежуточных направлений угловое распределение И. меняется пропорционально sin2 ϑ, где угол ϑ отсчитывается от направления оси колебаний. Если направление оси колебаний диполя меняется со временем, то усреднённое угловое распределение становится более сложным.

Реальные излучатели, как правило, включают множество зарядов. Точный учёт всех деталей движения каждого из них при исследовании И. излишен (а зачастую и невозможен). Действительно, И. определяется значениями полей вдали от источника, т. е. там, где детали распределения зарядов (и токов) в излучателе сказываются слабо. Это позволяет заменять истинное распределение зарядов приближённым. Самым грубым, "нулевым" приближением является рассмотрение излучающей системы как одного заряда, по величине равного сумме зарядов системы. У электронейтральной системы, сумма зарядов которой равна нулю, И. в этом приближении отсутствует. В следующем, первом, приближении положительные и отрицательные заряды системы по отдельности мысленно "стягиваются" к центрам своего распределения. Для электронейтральной системы это означает мысленную замену её электрическим диполем, излучающим согласно (4). Такое приближение называется дипольным, а соответствующее И. - электрическим дипольным И.

Электрическое квадрупольное и высшие мультипольные И. Если у системы зарядов дипольное И. отсутствует, например из-за равенства дипольного момента нулю, то необходимо учитывать следующее приближение, в котором система зарядов - источник И. - рассматривается как Квадруполь, т. е. четырехполюсник. Простейший квадруполь - 2 диполя, имеющие равные по величине и противоположные по направлению моменты. Ещё более детальное описание излучающей системы зарядов даёт рассмотрение последующих приближений, в которых распределение зарядов описывается мультиполями (См. Мультиполь) (многополюсниками) высших порядков (диполь называется мультиполем 1-го, квадруполь - 2-го и т. д. порядков).

Важно отметить, что в каждом последующем приближении интенсивность И. примерно в (v/c)2 меньше, чем в предыдущем (если, конечно, последнее не отсутствует по каким-либо причинам). Если излучатель - нерелятивистский, т. е. все заряды имеют скорости, много меньшие, чем световая (v/c << 1), то главную роль играет низшее неисчезающее приближение. Так, если имеется дипольное И., оно является основным, а все остальные высшие мультипольные поправки крайне малы и их можно не учитывать. В случае же И. релятивистских частиц описание И. с помощью мультиполей становится неэффективным, так как вклад мультиполей высших порядков перестаёт быть малым.

Магнитное дипольное И. Кроме электрических диполей и высших мультиполей, источниками И. могут быть также магнитные диполи и мультиполи (как правило, основным является дипольное магнитное И.). Картина распределения магнитного поля на больших расстояниях от контура, по которому протекает ток, порождающий это поле, подобна картине распределения электрического поля вдали от электрического диполя. Аналог дипольного электрического момента - дипольный магнитный момент М - определяется силой тока I в контуре и его геометрией. Для плоского контура абсолютная величина момента М = (e/c) IS, где S - площадь, охватываемая контуром. Формулы для интенсивности магнитного дипольного И. почти такие же, как и для электрического, только вместо электрического дипольного момента d в них стоит магнитный момент М. Так, если магнитный момент изменяется по гармоническому закону М = M0 sin ωt (для этого должна гармонически меняться сила тока I в контуре), то усреднённая по времени интенсивность И. равна:

(5)

здесь M0 - амплитуда магнитного момента M.

Отношение магнитного дипольного момента к электрическому имеет порядок v/c, где v - скорость движения зарядов, образующих ток; отсюда вытекает, что интенсивность магнитного дипольного И. в (v/c)2 раз меньше, чем дипольного электрического, если, конечно, последнее присутствует. Таким образом, интенсивности магнитного дипольного и электрического квадрупольного И. имеют одинаковый порядок величины.

И. релятивистских частиц. Одним из важнейших примеров такого И. является синхротронное И. заряженных частиц в циклических (кольцевых) ускорителях. Резкое отличие от нерелятивистского И. проявляется здесь уже в спектральном составе И.: если частота обращения заряженной частицы в ускорителе равна ω (нерелятивистский излучатель испускал бы волны такой же частоты), то интенсивность её И. имеет максимум при частоте ωмакс Излучение γ3ω, где γ = [1 - (v/c)2]-1/2, т. е. основная доля И. при vс приходится на частоты, более высокие, чем ω. Такое И. направлено почти по касательной к орбите частицы, в основном вперёд по направлению её движения.

Ультрарелятивистская частица может излучать электромагнитные волны, даже если она движется прямолинейно и равномерно (но только в веществе, а не в пустоте!). Это И., названное Черенкова - Вавилова излучением (См. Черенкова-Вавилова излучение), возникает, если скорость заряженной частицы в среде превосходит фазовую скорость света в этой среде (uфаз = c/n, где n - показатель преломления среды). И. появляется из-за того, что частица "перегоняет" порождаемое ею поле, отрывается от него.

Квантовая теория излучения. Выше уже говорилось, что классическая теория даёт лишь приближённое описание процессов И. (весь физический мир в принципе является "квантовым"). Однако существуют и такие физические системы, И. которых невозможно даже приближённо описать в согласии с опытом, оставаясь на позициях классической теории. Важная особенность таких квантовых систем, как атом или молекула, заключается в том, что их внутренняя энергия не меняется непрерывно, а может принимать лишь определённые значения, образующие дискретный набор. Переход системы из состояния с одной энергией в состояние с другой энергией (см. Квантовые переходы) происходит скачкообразно; в силу закона сохранения энергии система при таком переходе должна терять или приобретать определённую "порцию" энергии. Чаще всего этот процесс реализуется в виде испускания (или поглощения) системой кванта И. - Фотона. Энергия кванта εγ = ћω, где ћ - Планка постоянная (ћ = 1,05450․10-27 эргсек), ω - круговая частота. Фотон всегда выступает как единое целое, испускается и поглощается "целиком", в одном акте, имеет определённую энергию, импульс и спин (проекцию момента количества движения на направление импульса), т. е. обладает рядом корпускулярных свойств. В то же время фотон резко отличается от обычных классических частиц тем, что у него есть и волновые черты. Такая двойственность фотона представляет собой частное проявление корпускулярно-волнового дуализма (См. Корпускулярно-волновой дуализм).

Последовательной квантовой теорией И. является квантовая электродинамика (см. Квантовая теория поля). Однако многие результаты, относящиеся к процессам И. квантовых систем, можно получить из более простой полуклассической теории И. Формулы последней, согласно Соответствия принципу, при определённом предельном переходе должны давать результаты классической теории. Таким образом, устанавливается глубокая аналогия между величинами, характеризующими процессы И. в квантовой и классической теориях.

И. атома. Система из ядра и движущегося в его кулоновском поле электрона должна находиться в одном из дискретных состояний (на определённом уровне энергии). При этом все состояния, кроме основного (т. е. имеющего наименьшую энергию), неустойчивы. Атом, находящийся в неустойчивом (возбуждённом) состоянии, даже если он изолирован, переходит в состояние с меньшей энергией. Этот квантовый переход сопровождается испусканием фотона; такое И. называется спонтанным (самопроизвольным). Энергия, уносимая фотоном εγ = ћω, равна разности энергии начального i и конечного j состояний атома (εi > εj, εγ = εi - εj); отсюда вытекает формула Н. Бора для частот И.:

(6)

Важно отметить, что такие характеристики спонтанного И., как направление распространения (для совокупности атомов - угловое распределение их спонтанного И.) и поляризация, не зависят от И. других объектов (внешнего электромагнитного поля).

Формула Бора (6) определяет дискретный набор частот (и следовательно, длин волн) И. атома. Она объясняет, почему спектры И. атомов имеют хорошо известный "линейчатый" характер - каждая линия спектра соответствует одному из квантовых переходов атомов данного вещества.

Интенсивность И. В квантовой теории, как и в классической, можно рассматривать электрические дипольное и высшие мультипольные И. Если излучатель нерелятивистский, основным является электрическое дипольное И., интенсивность которого определяется формулой, близкой к классической:

(7)

Величины dij, являющиеся квантовым аналогом электрического дипольного момента, оказываются отличными от нуля лишь при определённых соотношениях между квантовыми числами (См. Квантовые числа) начального i и конечного j состояний (правила отбора для дипольного И.). Квантовые переходы, удовлетворяющие таким правилам отбора, называются разрешенными (фактически имеется в виду разрешенное электрическое дипольное И.). Переходы же высших мультипольностей называются запрещенными. Этот запрет относителен: запрещенные переходы имеют относительно малую вероятность, т. е. отвечающая им интенсивность И. невелика. Те состояния, переходы из которых "запрещены", являются сравнительно устойчивыми (долгоживущими). Они называются метастабильными состояниями (См. Метастабильное состояние).

Квантовая теория И. позволяет объяснить не только различие в интенсивностях разных линий, но и распределение интенсивности в пределах каждой линии; в частности, ширину спектральных линий (См. Ширина спектральных линий).

Источниками электромагнитного И. могут быть не только атомы, но и более сложные квантовые системы. Общие методы описания И. таких систем те же, что и при рассмотрении атомов, но конкретные особенности И. весьма разнообразны. И. молекул, например, имеет более сложные спектры, чем И. атомов. Для И. атомных ядер типично, что энергия отдельных квантов обычно велика (γ-кванты), интенсивность же И. сравнительно низка (см. Гамма-излучение, Ядро атомное).

Электромагнитное И. часто возникает и при взаимных превращениях элементарных частиц (аннигиляции электронов и позитронов, распаде нейтрального пи-мезона (См. Пи-мезоны) и т. д.).

Вынужденное И. Если частота внешнего И., падающего на уже возбуждённый атом, совпадает с одной из частот возможных для этого атома согласно (6) квантовых переходов, то атом испускает квант И., в точности такой же, как и налетевший на него (резонансный) фотон. Это И. называется вынужденным. По своим свойствам оно резко отличается от спонтанного - не только частота, но и направление распространения, и поляризация испущенного фотона оказываются теми же, что у резонансного. Вероятность вынужденного И. (в отличие от спонтанного!) пропорциональна интенсивности внешнего И., т. е. количеству резонансных фотонов. Существование вынужденного И. было постулировано А. Эйнштейном при теоретическом анализе процессов теплового И. тел с позиций квантовой теории и затем было подтверждено экспериментально. В обычных условиях интенсивность вынужденного И. мала по сравнению с интенсивностью спонтанного. Однако она сильно возрастает в веществе, в котором в метастабильном состоянии находится больше атомов, чем в одном из состояний с меньшей энергией (в которое возможен квантовый переход). При попадании в такое вещество резонансного фотона испускаются фотоны, в свою очередь играющие роль резонансных. Число излучаемых фотонов лавинообразно возрастает; результирующее И. состоит из фотонов, совершенно идентичных по своим свойствам, и образует когерентный поток (см. Когерентность). На этом явлении основано действие квантовых генераторов (См. Квантовый генератор) и квантовых усилителей (См. Квантовый усилитель) И.

Роль теории излучения. Практическое и научно-прикладное значение теории И. огромно. На ней основывается разработка и применение Лазеров и Мазеров, создание новых источников света, ряд важных достижений в области радиотехники и спектроскопии. Понимание и изучение законов И. важно и в другом отношении: по характеру И. (энергетическому спектру, угловому распределению, поляризации) можно судить о свойствах излучателя. И. - пока фактически единственный и весьма многосторонний источник информации о космических объектах. Например, анализ И., приходящего из космоса, привёл к открытию таких необычных небесных тел, как Пульсары. Изучение спектров далёких внегалактических объектов подтвердило теорию расширяющейся Вселенной (См. Вселенная). Одновременно изучение И. позволяет проникнуть в область явлений микромира. Именно теории И. принадлежит особая роль в формировании всей современной физической картины мира: преодоление трудностей, возникших в электродинамике движущихся сред, привело к созданию относительности теории (См. Относительности теория); исследования М. Планка, посвященные тепловому излучению (См. Тепловое излучение), положили начало квантовой теории и квантовой механике (См. Квантовая механика). Дальнейшее развитие теории И. должно привести к ещё более глубокому познанию материи.

Лит.: Тамм И. Е., Основы теории электричества, 7 изд., М., 1957; Иваненко Д., Соколов А., Классическая теория поля, М. - Л., 1949; их же, Квантовая теория поля, М. - Л., 1952; Ахиезер А. И., Берестецкий В. Б., Квантовая электродинамика, 2 изд., М., 1959; Ландау Л. Д., Лифшиц Е. М., Теория поля, 5 изд., М., 1967 (Теоретическая физика, т. 2).

В. И. Григорьев.

излучение         
ИЗЛУЧ'ЕНИЕ, излучения, ср. (·книж. ). Действие по гл. излучить
-излучать
и излучиться
-излучаться
. Излучение солнцем теплоты. Тепловое излучение. Нетепловое излучение. Радиоактивное излучение.
ИЗЛУЧЕНИЕ         
электромагнитное , процесс образования свободного электромагнитного поля; излучением называют также само свободное электромагнитное поле. Излучают ускоренно движущиеся заряженные частицы (напр., тормозное излучение, синхротронное излучение, излучение переменных диполя, квадруполя и мультиполей высшего порядков). Атом и другие атомные системы излучают при квантовых переходах из возбужденных состояний в состояния с меньшей энергией.
излучение         
ср.
1) Процесс действия по знач. глаг.: излучать (1), излучить.
2) Поток энергии, выделенной в окружающую среду.
Излучение         
В физике излучение — передача энергии в форме волн или частиц через пространство или через материальную среду. Это понятие включает в себя:
ТЕПЛОВОЕ ИЗЛУЧЕНИЕ         
ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ, ИСПУСКАЕМЫЕ ТЕЛАМИ ЗА СЧЁТ ИХ ВНУТРЕННЕЙ ЭНЕРГИИ
Равновесное излучение; Излучение равновесное; Температурное излучение
электромагнитное излучение, которое испускает вещество, имеющее определенную температуру, за счет своей внутренней энергии. Если тепловое излучение находится в термодинамическом равновесии с веществом, оно называется равновесным, распределение энергии в его спектре определяется Планка законом излучения. Для теплового излучения тел выполняется Кирхгофа закон излучения.
Температурное излучение         
ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ, ИСПУСКАЕМЫЕ ТЕЛАМИ ЗА СЧЁТ ИХ ВНУТРЕННЕЙ ЭНЕРГИИ
Равновесное излучение; Излучение равновесное; Температурное излучение
Тепловое излучение         
ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ, ИСПУСКАЕМЫЕ ТЕЛАМИ ЗА СЧЁТ ИХ ВНУТРЕННЕЙ ЭНЕРГИИ
Равновесное излучение; Излучение равновесное; Температурное излучение

температурное излучение, электромагнитное излучение, испускаемое веществом и возникающее за счёт его внутренней энергии (в отличие, например, от люминесценции (См. Люминесценция), возникающей за счёт внешних источников энергии). Т. и. имеет Сплошной спектр, положение максимума которого зависит от температуры вещества. С её повышением возрастает общая энергия испускаемого Т. и., а максимум перемещается в область малых длин волн. Т. и. испускают, например, поверхность накалённого металла, земная атмосфера и т. д.

Т. и. возникает в условиях детального равновесия в веществе (см. Детального равновесия принцип) для всех безызлучательных процессов, то есть для различных типов столкновений частиц в газах и плазме, для обмена энергиями электронного и колебательного движений в твёрдых телах и т. д. Равновесное состояние вещества в каждой точке пространства - состояние локального термодинамического равновесия (ЛТР) - при этом характеризуется значением температуры, от которого и зависит Т. и. вещества в данной точке.

В общем случае системы тел, для которой осуществляется лишь ЛТР и различные точки которой имеют различные температуры, Т. и. не находится в термодинамическом равновесии с веществом. Горячие тела испускают больше, чем поглощают, а более холодные - наоборот. Происходит перенос излучения от более горячих тел к более холодным. Для поддержания стационарного состояния, при котором сохраняется распределение температуры в системе, необходим подвод теплоты к более горячим телам и отвод от более холодных; это может осуществляться как в природных условиях (например, в атмосфере Земли), так и искусственно (например, в лампах накаливания).

При полном термодинамическом равновесии все части системы тел имеют одну температуру и энергия Т. и., испускаемого каждым телом, компенсируется энергией поглощаемого этим телом Т. и. др. тел. В этом случае Т. и. находится в термодинамическом равновесии с веществом и называется равновесным излучением (равновесным является Т. и. абсолютно чёрного тела (См. Абсолютно чёрное тело)). Спектр равновесного излучения не зависит от природы вещества и определяется Планка законом излучения (См. Планка закон излучения).

Для Т. и. нагретых тел в общем случае справедлив Кирхгофа закон излучения, связывающий их испускательную и поглощательную способности с испускательной способностью абсолютно чёрного тела.

При наличии ЛТР, применяя законы излучения Кирхгофа и Планка к испусканию и поглощению Т. и. в газах и плазме, можно изучать процессы переноса излучения. Такое рассмотрение широко используется в астрофизике (См. Астрофизика), в частности в теории звёздных атмосфер.

Лит.: Планк М., Теория теплового излучения, пер. с нем., Л.- М., 1935; Соболев В. В., Перенос лучистой энергии в атмосферах звезд и планет, М., 1956; Боеворт Р. Ч. Л., Процессы теплового переноса, пер. с англ., М., 1957; Ельяшевич М. А., Атомная и молекулярная спектроскопия, М., 1962.

М. Л. Ельяшевич.

Излучение равновесное         
ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ, ИСПУСКАЕМЫЕ ТЕЛАМИ ЗА СЧЁТ ИХ ВНУТРЕННЕЙ ЭНЕРГИИ
Равновесное излучение; Излучение равновесное; Температурное излучение
Тепловое излучение         
ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ, ИСПУСКАЕМЫЕ ТЕЛАМИ ЗА СЧЁТ ИХ ВНУТРЕННЕЙ ЭНЕРГИИ
Равновесное излучение; Излучение равновесное; Температурное излучение
Теплово́е излуче́ние — электромагнитные волны, испускаемые телами за счёт их внутренней энергии. Излучаются телами, имеющими температуру больше 0 К, то есть разными нагретыми телами, поэтому и называется тепловым. Имеет сплошной спектр, расположение и интенсивность максимума которого зависят от температуры тела. При остывании последний смещается в длинноволновую часть спектра.

Википедия

Излучение

В физике излучение — передача энергии в форме волн или частиц через пространство или через материальную среду. Это понятие включает в себя:

  • электромагнитное излучение — радиоволны, микроволны, инфракрасное излучение, видимый свет, ультрафиолетовое излучение, рентгеновское излучение и гамма-излучение (γ);
  • излучение частиц — альфа-излучение (α), бета-излучение (β), нейтронное и нейтринное излучение (нейтральные частицы с ненулевой энергией покоя);
  • акустическое излучение — ультразвуковые, звуковые и сейсмические волны (в зависимости от физической среды передачи);
  • гравитационное излучение — излучение, которое принимает форму гравитационных волн, или рябь в кривизне пространства-времени.

Излучение часто классифицируется как ионизирующее или неионизирующее в зависимости от энергии излучаемых частиц. Ионизирующее излучение несёт более 10 эВ, что достаточно для ионизации атомов и молекул, а также разрыва химических связей. Это важное различие из-за большой разницы в пагубности для живых организмов. Распространенным источником ионизирующего излучения являются радиоактивные материалы, которые испускают α, β или γ излучение, состоящее из ядер гелия, электронов или позитронов и фотонов соответственно. К другим источникам относятся рентгеновские лучи от медицинских исследований рентгенографии, а также мюоны, мезоны, позитроны, нейтроны и другие частицы, которые составляют вторичные космические лучи, которые образуются после взаимодействия первичных космических лучей с атмосферой Земли.

Гамма-лучи, рентгеновское излучение и более высокий энергетический диапазон ультрафиолетового (УФ) света составляют ионизирующую часть электромагнитного спектра. Слово «ионизировать» относится к отрыву одного или нескольких электронов от атома, процесс, который требует относительно высокой энергии, обеспеченной электромагнитными волнами. Далее по спектру следуют неионизирующие источники энергии из нижнего ультрафиолетового спектра, которые не могут ионизировать атомы, но могут нарушать межатомные связи, которые образуют молекулы, тем самым разрушая их, а не атомы. Хорошим примером этого является солнечный ожог, вызванный длинноволновым солнечным ультрафиолетом. Волны с большей длиной волны, чем УФ, в видимом, инфракрасном и микроволновом диапазоне частот не могут разорвать связи, но могут вызвать вибрации в связях, которые воспринимаются как тепло. Радиоволны и ниже, как правило, не рассматриваются как вредные для биологических систем. Но это не резкое разграничение энергий, поскольку есть другие эффекты связанные с совпадением определённых частот.

Слово «излучение» происходит от явления исходящих волн (то есть распространяющихся во всех направлениях) от источника. Этот аспект приводит к системе измерений и физических единиц, которые применимы ко всем типам излучения. Поскольку такое излучение расширяется при прохождении через пространство и сохранении его энергии (в вакууме), интенсивность всех типов излучения от точечного источника следует закону обратных квадратов по отношению к расстоянию от его источника. Как и любой идеальный закон, закон обратных квадратов аппроксимирует измеренную интенсивность излучения до такой степени, как если бы источник приближался к геометрической точке.